MetalloPred: a tool for hierarchical prediction of metal ion binding proteins using cluster of neural networks and sequence derived features
نویسندگان
چکیده
Given a protein sequence, how can we identify whether it is a metalloprotein or not? If it is, which main functional class and subclasses it belongs to? This is an important biological question because they are closely related to the biological function of an uncharacterized protein. Particularly, with the avalanche of protein sequences generated in the post genomic era and since conventional techniques are time consuming and expensive, it is highly desirable to develop an automated method by which one can get a fast and accurate answer to these questions. Here, a top-down predictor, called MetalloPred, is developed which consists of 3 level of hierarchical classification using cascade of neural networks from sequence derived features. The 1 layer of the prediction engine is for identifying a query protein as metalloprotein or not; the 2 layer for the main functional class; and the 3 layer for the sub-functional class. The overall success rates for all the three layers are higher than 60% that were obtained through rigorous cross-validation tests on the very stringent benchmark datasets in which none of the proteins has 30% sequence identity with any other in the same class or subclass. MetalloPred achieved good prediction accuracies and could nicely complement experimental approaches for identification of metal binding proteins. MetalloPred is freely available to be used in-house as a standalone and is accessible at http://www.juit.ac.in/assets/Metallopred/.
منابع مشابه
Artificial Neural Networks Analysis Used to Evaluate the Molecular Interactions between Selected Drugs and Human Cyclooxygenase2 Receptor
Objective(s): A fast and reliable evaluation of the binding energy from a single conformation of a molecular complex is an important practical task. Artificial neural networks (ANNs) are strong tools for predicting nonlinear functions which are used in this paper to predict binding energy. We proposed a structure that obtains binding energy using physicochemical molecular descripti...
متن کاملPrediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin
The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...
متن کاملArtificial neural networks: applications in pain physiology
Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...
متن کاملArtificial neural networks: applications in pain physiology
Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...
متن کاملPrediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کامل